/**
|
* Tencent is pleased to support the open source community by making QMUI_iOS available.
|
* Copyright (C) 2016-2021 THL A29 Limited, a Tencent company. All rights reserved.
|
* Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at
|
* http://opensource.org/licenses/MIT
|
* Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
|
*/
|
//
|
// QMUIEasings.h
|
// WeRead
|
//
|
// Created by zhoonchen on 2018/9/3.
|
//
|
|
#import <UIKit/UIKit.h>
|
|
/// https://easings.net
|
/// http://cubic-bezier.com
|
|
CG_INLINE CGFloat
|
QMUI_Linear(CGFloat t) {
|
return t;
|
}
|
|
CG_INLINE CGFloat
|
QMUI_EaseInSine(CGFloat t) {
|
return 1 - cos(t * M_PI_2);
|
}
|
|
CG_INLINE CGFloat
|
QMUI_EaseOutSine(CGFloat t) {
|
return sin(t * M_PI_2);
|
}
|
|
CG_INLINE CGFloat
|
QMUI_EaseInOutSine(CGFloat t) {
|
return - (cos(M_PI * t) - 1) / 2;
|
}
|
|
CG_INLINE CGFloat
|
QMUI_EaseInQuad(CGFloat t) {
|
return pow(t, 2);
|
}
|
|
CG_INLINE CGFloat
|
QMUI_EaseOutQuad(CGFloat t) {
|
return 1 - pow(1 - t, 2);
|
}
|
|
CG_INLINE CGFloat
|
QMUI_EaseInOutQuad(CGFloat t) {
|
return t < 0.5 ? (2 * pow(t, 2)) : (1 - pow(-2 * t + 2, 2) / 2);
|
}
|
|
CG_INLINE CGFloat
|
QMUI_EaseInCubic(CGFloat t) {
|
return pow(t, 3);
|
}
|
|
CG_INLINE CGFloat
|
QMUI_EaseOutCubic(CGFloat t) {
|
return 1 - pow(1 - t, 3);
|
}
|
|
CG_INLINE CGFloat
|
QMUI_EaseInOutCubic(CGFloat t) {
|
return t < 0.5 ? (4 * pow(t, 3)) : (1 - pow(-2 * t + 2, 3) / 2);
|
}
|
|
CG_INLINE CGFloat
|
QMUI_EaseInQuart(CGFloat t) {
|
return pow(t, 4);
|
}
|
|
CG_INLINE CGFloat
|
QMUI_EaseOutQuart(CGFloat t) {
|
return 1 - pow(1 - t, 4);
|
}
|
|
CG_INLINE CGFloat
|
QMUI_EaseInOutQuart(CGFloat t) {
|
return t < 0.5 ? (8 * pow(t, 4)) : (1 - pow(-2 * t + 2, 4) / 2);
|
}
|
|
CG_INLINE CGFloat
|
QMUI_EaseInQuint(CGFloat t) {
|
return pow(t, 5);
|
}
|
|
CG_INLINE CGFloat
|
QMUI_EaseOutQuint(CGFloat t) {
|
return 1 - pow(1 - t, 5);
|
}
|
|
CG_INLINE CGFloat
|
QMUI_EaseInOutQuint(CGFloat t) {
|
return t < 0.5 ? (16 * pow(t, 5)) : (1 - pow(-2 * t + 2, 5) / 2);
|
}
|
|
CG_INLINE CGFloat
|
QMUI_EaseInExpo(CGFloat t) {
|
return t == 0 ? 0 : pow(2, 10 * t - 10);
|
}
|
|
CG_INLINE CGFloat
|
QMUI_EaseOutExpo(CGFloat t) {
|
return t == 1 ? 1 : 1 - pow(2, -10 * t);
|
}
|
|
CG_INLINE CGFloat
|
QMUI_EaseInOutExpo(CGFloat t) {
|
return t == 0 ? 0 : t == 1 ? 1 : t < 0.5 ? pow(2, 20 * t - 10 ) / 2 : (2 - pow(2, -20 * t + 10 )) / 2;
|
}
|
|
CG_INLINE CGFloat
|
QMUI_EaseInCirc(CGFloat t) {
|
return 1 - sqrt(1 - pow(t, 2));
|
}
|
|
CG_INLINE CGFloat
|
QMUI_EaseOutCirc(CGFloat t) {
|
return sqrt(1 - pow(t - 1, 2));
|
}
|
|
CG_INLINE CGFloat
|
QMUI_EaseInOutCirc(CGFloat t) {
|
return t < 0.5 ? (1 - sqrt(1 - pow(2 * t, 2))) / 2 : (sqrt(1 - pow(-2 * t + 2, 2)) + 1) / 2;
|
}
|
|
CG_INLINE CGFloat
|
QMUI_EaseInBack(CGFloat t) {
|
return pow(t, 3) - t * sin(t * M_PI);
|
}
|
|
CG_INLINE CGFloat
|
QMUI_EaseOutBack(CGFloat t) {
|
CGFloat f = (1 - t);
|
return 1 - (pow(f, 3) - f * sin(f * M_PI));
|
}
|
|
CG_INLINE CGFloat
|
QMUI_EaseInOutBack(CGFloat t) {
|
if (t < 0.5) {
|
CGFloat f = 2 * t;
|
return 0.5 * (pow(f, 3) - f * sin(f * M_PI));
|
} else {
|
CGFloat f = (1 - (2 * t - 1));
|
return 0.5 * (1 - (pow(f, 3) - f * sin(f * M_PI))) + 0.5;
|
}
|
}
|
|
CG_INLINE CGFloat
|
QMUI_EaseInElastic(CGFloat t) {
|
return sin(13 * M_PI_2 * t) * pow(2, 10 * (t - 1));
|
}
|
|
CG_INLINE CGFloat
|
QMUI_EaseOutElastic(CGFloat t) {
|
return sin(-13 * M_PI_2 * (t + 1)) * pow(2, -10 * t) + 1;
|
}
|
|
CG_INLINE CGFloat
|
QMUI_EaseInOutElastic(CGFloat t) {
|
if (t < 0.5) {
|
return 0.5 * sin(13 * M_PI_2 * (2 * t)) * pow(2, 10 * ((2 * t) - 1));
|
} else {
|
return 0.5 * (sin(-13 * M_PI_2 * ((2 * t - 1) + 1)) * pow(2, -10 * (2 * t - 1)) + 2);
|
}
|
}
|
|
CG_INLINE CGFloat
|
QMUI_EaseOutBounce(CGFloat t) {
|
if (t < 4.0 / 11.0) {
|
return (121.0 * t * t) / 16.0;
|
} else if (t < 8.0 / 11.0) {
|
return (363.0 / 40.0 * t * t) - (99.0 / 10.0 * t) + 17.0 / 5.0;
|
} else if(t < 9.0 / 10.0) {
|
return (4356.0 / 361.0 * t * t) - (35442.0 / 1805.0 * t) + 16061.0 / 1805.0;
|
} else {
|
return (54.0 / 5.0 * t * t) - (513.0 / 25.0 * t) + 268.0 / 25.0;
|
}
|
}
|
|
CG_INLINE CGFloat
|
QMUI_EaseInBounce(CGFloat t) {
|
return 1 - QMUI_EaseOutBounce(1 - t);
|
}
|
|
CG_INLINE CGFloat
|
QMUI_EaseInOutBounce(CGFloat t) {
|
if (t < 0.5) {
|
return 0.5 * QMUI_EaseInBounce(t * 2);
|
} else {
|
return 0.5 * QMUI_EaseOutBounce(t * 2 - 1) + 0.5;
|
}
|
}
|
|
CG_INLINE CGFloat
|
QMUI_EaseSpring(CGFloat t, CGFloat mass, CGFloat damping, CGFloat stiffness, CGFloat initialVelocity) {
|
|
// https://webkit.org/demos/spring/spring.js
|
// https://webkit.org/demos/spring
|
|
CGFloat m_w0 = sqrt(stiffness / mass);
|
CGFloat m_zeta = damping / (2 * sqrt(stiffness * mass));
|
|
CGFloat m_wd = 0;
|
CGFloat m_A = 0;
|
CGFloat m_B = 0;
|
|
if (m_zeta < 1) {
|
// Under-damped.
|
m_wd = m_w0 * sqrt(1 - m_zeta * m_zeta);
|
m_A = 1;
|
m_B = (m_zeta * m_w0 + -initialVelocity) / m_wd;
|
} else {
|
// Critically damped (ignoring over-damped case for now).
|
m_wd = 0;
|
m_A = 1;
|
m_B = -initialVelocity + m_w0;
|
}
|
|
if (m_zeta < 1) {
|
// Under-damped
|
t = exp(-t * m_zeta * m_w0) * (m_A * cos(m_wd * t) + m_B * sin(m_wd * t));
|
} else {
|
// Critically damped (ignoring over-damped case for now).
|
t = (m_A + m_B * t) * exp(-t * m_w0);
|
}
|
|
// Map range from [1..0] to [0..1].
|
return 1 - t;
|
}
|